УДК: 631.4:551.435.2:528.8

СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ ПРОВЕДЕНИЯ АНАЛИЗА РАСТИТЕЛЬНОСТИ И ПОЧВ ПРЕДГОРНЫХ ТЕРРИТОРИЙ С ИСПОЛЬЗОВАНИЕМ ГЕОПРОСТРАНСТВЕННЫХ ДАННЫХ И ТЕХНОЛОГИЙ

- 1) **Шавазов Темур Каримжонович** ассистент кафедры Геодезия и Геоинформатика "ТИИИМСХ" НИУ, Ташкент, Узбекистан
- 2) **Тургунова Мафтуна Закировна** тютор 1- курса факультета "Земельные ресурсы и кадастр" "ТИИИМСХ" НИУ, Ташкент, Узбекистан
- 3) **Абдумажидова Нафиса Илхомжон қизи** Студент 1- курса факультета "Земельные ресурсы и кадастр" "ТИИИМСХ" НИУ, Ташкент, Узбекистан
- 4) **Рашидова Саёра Алишер қизи** Студент 1- курса факультета "Земельные ресурсы и кадастр" "ТИИИМСХ" НИУ, Ташкент, Узбекистан
- 5) **Суюнбеков Саиджахон Бахтиёр ўгли** Студент 1- курса факультета "Земельные ресурсы и кадастр" "ТИИИМСХ" НИУ, Ташкент, Узбекистан

Аннотация. В данной статье представлены предложения по использованию данных дистанционного зондирования Земли в качестве основы для мониторинга всех видов изменений вегетационного периода на сельскохозяйственных угодьях и усовершенствования метода своевременного принятия необходимого решения.

Ключевые слова: точное земледелие, дистанционное зондирование, ГИС, ЭОСДА.

IMPROVEMENT OF THE SYSTEM FOR CONDUCTING ANALYSIS OF VEGETATION AND SOILS IN FOOTHILL AREAS USING GEOSPATIAL DATA AND TECHNOLOGIES

- 1) **Shavazov Temur Karimzhonovich**, Assistant, Department of Geodesy and Geoinformatics, TIIAME, Tashkent National Research University, Uzbekistan
- 2) **Turgunova Maftuna Zakirovna**, 1st-year tutor, Faculty of Land Resources and Cadastre, TIIAME, Tashkent National Research University, Uzbekistan
- 3) Abdumazhidova Nafisa Ilkhomzhon kizi, 1st-year student, Faculty of Land Resources and Cadastre, TIIAME, Tashkent National Research University, Uzbekistan
- 4) Rashidova Sayora Alisher kizi, 1st-year student, Faculty of Land Resources and Cadastre, TIIAME, Tashkent National Research University, Uzbekistan
- 5) Suyunbekov Saidjakhon Bakhtiyor ogli 1st-year student, Faculty of Land Resources and Cadastre" "TIIAME" National Research University, Tashkent, Uzbekistan

Abstract. This article presents proposals for using remote sensing data as a basis for monitoring all types of changes during the growing season in agricultural lands and improving the method for timely decision-making.

Keywords: precision agriculture, remote sensing, GIS, EOSDA.

Введение.

Спутниковый мониторинг сельскохозяйственных культур – это технология, позволяющая в режиме реального времени отслеживать сельскохозяйственных культур вегетационные индексы посредством спектрального анализа спутниковых снимков высокого разрешения для различных полей и культур, что позволяет отслеживать положительную и отрицательную динамику развития сельскохозяйственных культур [1]. Разница в вегетационном индексе даёт информацию о дисбалансе в развитии указывает необходимость отдельного растения, что на проведения дополнительных агротехнических работ в определённых зонах поля, спутниковый мониторинг сельскохозяйственных поскольку культур относится к специфическим агротехническим приёмам. [1-3]

Методы и источники исследования

Технологии дистанционного зондирования позволяют осуществлять мониторинг природных ресурсов, включая растительные и почвенные [4-6]. В качестве объекта исследования было выбрано поле фермерского хозяйства «Зариф Бурхонов» Китабского района Кашкадарьинской области. В ходе исследования было рассчитано несколько видов специальных индексов (таблица 1). В качестве программного обеспечения, позволяющего ускорить расчёт нескольких видов индексов, была выбрана платформа Crop Monitoring Platform[7]. В качестве пространственных данных эта платформа рассчитывает значения индексов с использованием спутниковых продуктов Sentinel-2. Обновление космических снимков каждые 3–5 дней обеспечивает быстрое получение данных в режиме реального времени. Кроме того, для больших территорий используются данные спутников Landsat и MODIS Terra и Aqua.

Index/Parameter	Formula/Description
Normalized Difference Vegetation Index (NDVI)	(NIR - Red) / (NIR + Red)
Normalized Difference Moisture Index (NDMI)	(NIR - SWIR) / (NIR + SWIR)
Enhanced Vegetation Index (EVI)	2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 * Blue + 1))
Green Normalized Difference Vegetation Index (GNDVI)	(NIR - Green) / (NIR + Green)
Soil-Adjusted Vegetation Index (SAVI)	((NIR - Red) / (NIR + Red + L)) * (1 + L)
Normalized Difference Water Index (NDWI)	(Green - NIR) / (Green + NIR)
Leaf Area Index (LAI)	Varies depending on the specific model used
Crop Water Stress Index (CWSI)	Varies depending on the specific model used
Soil Moisture Index	Varies depending on the specific calculation method used
Slope	Calculated from the elevation data to represent the inclination of the terrain
Elevation Map	Representation of the terrain's elevation values
Red Edge Chlorophyll Index (RECI)	(NIR - Red Edge) / (NIR + Red Edge)
Normalized Difference Infrared Index (NDII)	(NIR - SWIR) / (NIR + SWIR)

Таблица 1: Список индексов, рассчитываемых платформой EOSDA.

Результаты и обсуждение

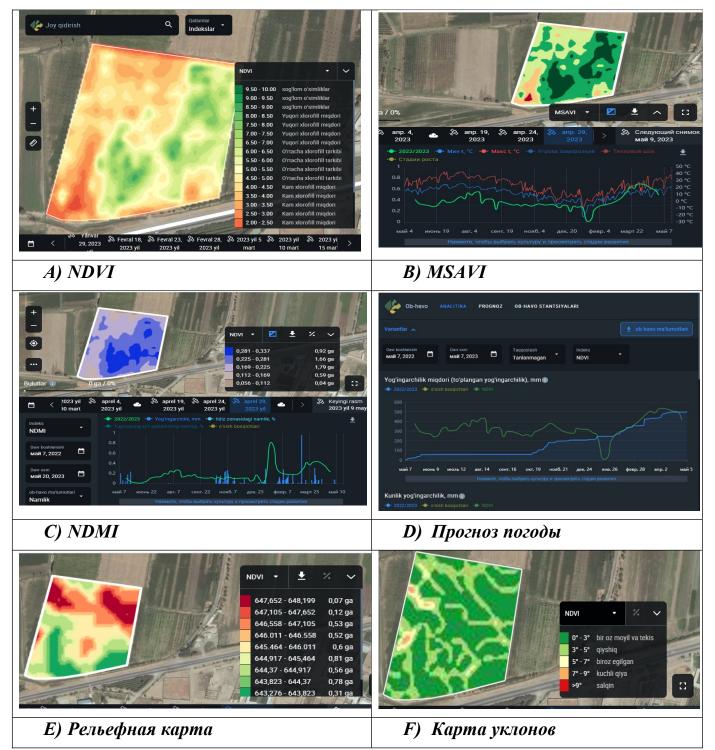


Рисунок 1: Индексы, рассчитанные в ходе исследования.

Модифицированный индекс растительности почвы (MSAVI) — на основе этого индекса можно создавать карты для дифференцированного внесения удобрений на ранних стадиях роста сельскохозяйственных культур. Как видно на рисунке 1В, MSAVI, или модифицированный индекс растительности почвы, показывает степень и процент загрязнения почвы:

темно-зеленые участки указывают на хорошее состояние, светло-зеленые – на лучшее, а желтые, светло-красные и темно-красные – на загрязнение почвы [2].

Как видно на рисунке, пораженный участок почвы также влияет на ростовую активность растений. То есть, в красной области рост и развитие растений замедляются, поэтому необходимо проанализировать почву перед посадкой, а затем и непосредственно посадкой. Этот мониторинг показывает не только уровень заболевания почвы, но и ее влажность, недостаток необходимых удобрений, а также карты высот и уклонов. Кроме того, он также показывает содержание хлорофилла в листьях растений [3].

Нормализованный разностный индекс красного цвета и вегетационный индекс (NDRE и NDVI) являются мерами фотосинтетической активности, используемыми для оценки концентрации азота в листьях растений в середине и конце сезона (рисунок 1A). Это позволяет выявлять нездоровые растения, используется для диагностики заболеваний растений и позволяет оптимизировать сроки уборки урожая. NDRE полезен на поздних стадиях развития растений. Для районов с очень густым растительным покровом рекомендуется использовать NDRE вместо NDVI. Волнистые красные и синие линии, видимые на изображении, — это температура воздуха, указывающая процент температуры воздуха в °С.

Нормализованный индекс разности влажности (NDMI) характеризует уровень водного стресса сельскохозяйственной культуры и рассчитывается как отношение разности к сумме преломленного излучения в ближнем и среднем инфракрасном спектре (рисунок 1С). Интерпретация абсолютного NDMI позволяет сразу определить области фермы или поля, испытывающие водный стресс. NDMI легко интерпретируется: его значения варьируются от (-1) до (1), и каждое значение соответствует разному агротехническому состоянию, независимо от культуры.

Карта высот — это цифровая модель, содержащая информацию о высоте местности (рисунок 1Е). Из этого следует, что полив растений на неровных участках земли может быть довольно затруднительным. Поэтому при выравнивании почвы необходимо обращать внимание и на эти мелкие детали. Если вода застаивается в одном месте, мы можем наблюдать замедление роста и задержку роста растений в этом месте.

Карта уклонов — описывает уровень возвышенности или понижения рельефа в градусах (рисунок 1F). Как видно на рисунке, индекс этой карты уклонов также уменьшается от зелёного к красному. Из этого следует, что карта уклонов местности неровная. На таком уклоне возникает ряд проблем с равномерным стоком воды и её потреблением растениями.

На рисунке 1D представлен аналитический прогноз количества осадков в год по месяцам. Это позволяет получить точную информацию о том, в какие месяцы количество осадков увеличилось или уменьшилось. Данный прогноз составлен по орошаемой площади Китабского района Кашкадарьинской области.

Заключение

Производительность сельского хозяйства является одной из важнейших сфер жизни населения республики. Точное земледелие является основным управления инструментом рационального природными ресурсами снижения себестоимости продукции. Своевременно и правильно принятые решения позволяют снизить ущерб сельскохозяйственным культурам, сохранить и повысить урожайность. Кроме того, в условиях дефицита воды использование технологий дистанционного зондирования является одним из наиболее оптимальных решений для смягчения ущерба от дефицита воды и экономии водных ресурсов на орошаемых территориях республики. В данном исследовании описывается процесс мониторинга всхожести и состояния растений, оценки влажности и уклона почвы, определения температуры воздуха В режиме реального времени получения двухнедельных прогнозов с использованием технологий дистанционного зондирования на орошаемых территориях.

Использованная литература

- 1. Schepers, J.1999. Экологические проблемы сельского хозяйства. Семинар: Точное земледелие и окружающая среда. Национальная академия наук. Цит. по: Hatfield (2000) стр.4
- 2. Ш. Шокиров, И. М. Мусаев. Дистанционное зондирование. Учебная литература Ташкент-2015
- 3. Wim H. Bakker, Lucas L.F. Janssen, Colin W. Reeves (2001),
- ITC: Принципы дистанционного зондирования. 4. https://cropmonitoring.eos.com/
- 5. Карими, Й. Прашер, О. Патель, М. и Ким, Х. (2014) Применение технологии опорных векторных машин для определения сорняков и азотного стресса в точном земледелии. Журнал «Компьютеры и электроника в сельском хозяйстве». 51 (1–2). С. 99–109.
- 6. Сай, 3. Фань, И. Юйлян, Т. Лэй, С. и Ифон, 3. (2016) Оптимизированный алгоритм размещения сенсорных узлов для интеллектуального сельскохозяйственного мониторинга. Международный журнал передовых исследований в области электротехники, электроники и приборостроения. 3(2). С. 76–86.
- 7. Тваракави, К. Симунек, Дж. и Шаап, Г. (2015) Разработка функций для оценки гидравлических параметров почвы с использованием опорных векторных машин для точного земледелия. Журнал «Американское общество почвоведов». 73. стр. 1443–1452.