УДК: 616.36-092:616-089.843:613.2

Джуманова Наргиза Эшмаматовна

Самостоятелные исследователь
Самаркандского Государственного Университета
имени Шароф Рашидова
Самарканд, Узбекистан

ЭКСПЕРИМЕНТАЛЬНИЙ МОДЕЛ МОРФОФУНКЦИОНАЛЬНОГО СОСТОЯНИЕ ПЕЧЕНИ ПРИ ВЫСОКОЖИРОВОЙ И ВЫСОКОУГЛЕВОДНОЙ ДИЕТЕ

Целью Аннотация: исследования разработка явилась экспериментальной модели метаболического синдрома (МС) у крыс с использованием высокожировой и высокоуглеводной диеты в течение 12 недель морфофункциональное состояние печени. влияния на Установлено, что несбалансированный рацион приводит к развитию характерных морфологических нарушений в печени экспериментальных крыс, включая дискомплексацию балочно-радиального строения, дистрофию гепатоцитов (белковая и жировая), а также активацию регенераторных процессов (увеличение двуядерных гепатоцитов в 1,5 раза) и пролиферации стромы. Наблюдалось достоверное уменьшение объема паренхимы (p < 0.05). стромально-паренхиматозного индекса что свидетельствует 0 риске развития фиброза стеатогепатита. Разработанная признана адекватной модель для воспроизведения МС у грызунов большинства типичных признаков uизучения его морфологических основ.

Ключевые слова: Метаболический синдром, экспериментальная модель, высокожировая диета, высокоуглеводная диета, печень, гепатоциты, морфофункциональные нарушения.

UDC: 616.36-092:616-089.843:613.2

Zhumanova Nargiza Eshmamatovna

Independent Researcher Samarkand State University
named after Sharof Rashidov
Samarkand, Uzbekistan

EXPERIMENTAL MODEL OF MORPHOFUNCTIONAL STATUS OF THE LIVER UNDER HIGH-FAT AND HIGH-CARBOHYDRATE DIETS

Abstract: The aim of the study was to develop an experimental model of metabolic syndrome (MS) in rats using a high-fat and high-carbohydrate diet over 12 weeks and to study its influence on the morphofunctional status of the liver. It was established that the unbalanced diet leads to the development of characteristic morphological disorders in the liver of experimental rats, including the decompaction of the beam-radial structure, hepatocyte dystrophy (protein and fatty), as well as the activation of regenerative processes (a 1.5-fold increase in binucleated hepatocytes) and stromal proliferation. A significant decrease in parenchymal volume and an increase in the stromal-parenchymal index (p<0.05) were observed, indicating a risk of developing fibrosis and steatohepatitis. The developed model is recognized as adequate for reproducing most typical signs of MS in rodents and studying its morphological basis.

Keywords: Metabolic syndrome, experimental model, high-fat diet, high-carbohydrate diet, liver, hepatocytes, morphofunctional disorders.

Введение. Метаболический синдром — это комплекс метаболических, гормональных и гемодинамических нарушений, увеличивающих риск развития сердечно-сосудистых заболеваний. По данным Kwitek A.E. (2019) наиболее значимыми факторами развития МС считаются абдоминальное ожирение и

инсулинорезистентность. Международной федерации диабета (IDF) определяет МС как состояние, включающее висцеральное ожирение и повышенное артериальное давление (АД) и гипергликемию.

По информации ВОЗ патология печени занимает одно из ведущих мест среди заболеваний органов пищеварения. В мире более 2 млрд человек страдают заболеваниями печени, что в 100 раз превышает распространённость ВИЧ-инфекции. Согласно статистическим данным, за последние годы в структуре поражений печени преобладают алкогольные и вирусные гепатиты и циррозы, увеличился процент опухолевой патологии печени, поражение печени вследствие нарушений обмена веществ, в том числе ожирения [Чабанова Н.Б. 2016].

Наибольшие экспериментальные исследований посвящено изучению влияния ожирения, вызванного высокожировым рационом питания на организм крыс самок [Васендин Д.В. и др. 2014, Ilyasov A.S. 2024]. Но, несмотря на наличие работ, посвященных изучению влияния экзогенных факторов на организм крыс, комплексное действие несбалансированного рациона питания с избытком жиров и углеводов на морфофункциональное состояние печени крыс остаётся не до конца изученным. По мнению Ильясов А.С., и др. (2024) диета при эксперименте наиболее приближена к питанию современного человека и считается максимально адекватной для МС и воспроизведения и феноменологии морфологических факторов нарушения у крыс.

В разработка связи c ЭТИМ целью исследования явилась экспериментальной MC крыс высокожировой модели на основе высокоуглеводной диеты.

Материал и методы исследования. Животные содержались в стандартных условиях вивария с 12-часовой продолжительностью светового

дня и свободным доступом к пище и воде. Для исследования крыс всего 30 животных массой 180 - 210 г, возраст на начало исследования 3 месяц были случайным образом распределены на контрольную (n = 15) и экспериментальную (n = 15) группы.

Исследование выполнено на крысах. Контрольной групп животных находились на стандартной диете. Экспериментальная группа крыс в течение 12 нед получали высокожировую и высокоуглеводную диету. После чего животные подверглись эвтаназии. Для подтверждения развития метаболического синдрома у крыс, содержавшихся на высокожировой и высокоуглеводной диетой, в конце исследования измеряли массу тела. Подготовленные объекты исследования заливали в парафиновую среду и на автоматическом микротоме выполняли тонкие 4–6 мкм срезы. Срезы окрашивали гематоксилином – эозином и по ван-Гизону.

В гистологических препаратах контрольной и экспериментальной группы измеряли структурные элементы печени крыс: строму, паренхиму (в %) и определяли стромально-паренхиматозный индекс.

Результаты и их обсуждение. Печень является одним из наиболее важных и крупных органов, накапливающих и поставляющих для использования в различных процессах энергоемкие вещества, большая часть которых представлена гликогеном.

Макроскопическое исследования существенных различий в строениях печени у крыс контрольной и экспериментальной групп не выявлено. При микроскопическом исследовании в печени крыс, получавших высокожировой и высокоуглеводной питания, установлены существенные отличия от печени крыс контрольной группы. У интактных крыс цитоплазма гепатоцитов характеризовалась мелкой базофильной зернистостью (рис. 1).

Микрофотография срезов печени экспериментальных крыс 6-месячного

2. Гле возраста показаны рисунке виден дискомплексации балочнорадиарного строения. В центрах долек гепатоциты зачастую были в состоянии белковой дистрофии, а перипортально обнаруживались набухшие гепатоциты светлой пенистой цитоплазмой co И пикнотичными свидетельствует гиперхромными ядрами, что нарушении ИХ морфофункциональной активности.

Дистрофические изменения гепатоцитов являются морфологическим выражением нарушения комплекса функциональных механизмов, обеспечивающих углеводножировой, водно-электролитный и белковый обмен. Одной из причин элиминации энергетических трофических веществ из печени, является расходование энергии на процессы адаптации.

Преобладание изменений со стороны клеток печени свидетельствует, адаптационные возможности обеспечиваются оптимальные высоким, чем в норме напряжением регуляторных систем. Благодаря механизмам компенсации заболевание не выражено или находится в начальной стадии. Однако, если окружающая среда предъявит ЭТИМ нагрузки, животным дополнительные может возникнуть срыв гомеостатических систем и развитие заболевания. В таблица 1. показано, морфометрические показатели клеток печени крыс при влиянии высокожировой и высокоуглеводной питании.

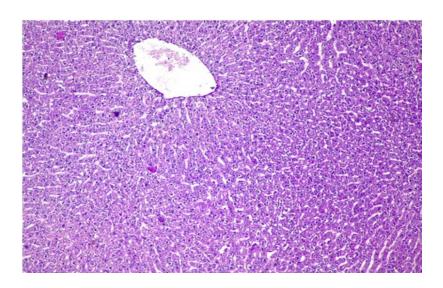


Рис. 1. Микрофотография срезов печени крыс контрольной группи 6-месячного возраста; 1. гепатоциты, 2. печеночные дольки с гепатоцитами, центральная вена. Окраска по гематоксилину-эозину. Об.10 х ок.20.

Степень повреждения паренхимы печени оценивали на основании определения регенераторной активности и относительного объёма элементов паренхимы и стромы с вычислением стромально-паренхиматозного индекса.

В рисунке 3. показаны микрофотография срезов печени экспериментальных крыс 6-месячного возраста, окрашенных по методу ван-Гизон в нем видна дискомплексацией балочнорадиарного строения паренхимы печени.

Регенераторную активность печени оценивали на основании подсчёта количества двуядерных гепатоцитов в процентном соотношении к их одноядерным формам.

Установлено, что у крыс экспериментальной группы количество двуядерных гепатоцитов в 1,5 раза (р <0,05) превышает их количество у животных контрольной группы на $3,6\pm0,03\%$ и $2,4\pm0,03\%$ соответственно. Это свидетельствует об умеренной интенсивности повреждения печени и активации процесса регенерации паренхимы.

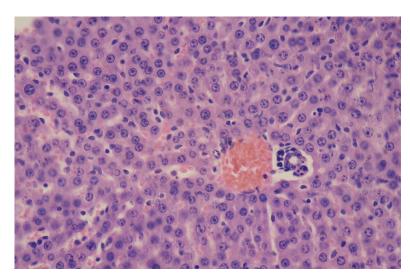


Рис. 2. Микрофотография срезов печени экспериментальных крыс 6-месячного возраста; 1. печеночные дольки с гепатоцитами. 1. клеточной инфильтрации. 2. дискомплексацией балочнорадиарного строения. 3. дистрофия гепатоцитов. 4. двуядерные гепатоциты. Окраска по гематоксилину-эозину. Об.10 х ок.40.

Таблица 1. Морфометрические показатели клеток печени крыс при влиянии высокожировой и высокоуглеводной питании

 $(M\pm m)$

Структурные элементы	Группа крыс	
	контрольная	экспериментальная
Размер гепатоцитов в мкм ²	131,2 - 307,9	123,2 - 231,3
	208,7	191,5*
Размер ядра гепатоцитов в мкм ²	26,7 - 57,8	22,5 - 36,7
	38,7	35,3*
Я/Ц в усл. ед.	0,14- 0,46	0,11-0,31
	0,24	0,19*

Примечание: * p < 0.05 - достоверно значимые отличия от контроля;

Я/Ц - ядерно-цитоплазматическое отношение;

По данным Кравчук Е.Н., Галагудза М.М. (2014) периодическое употребление несбалансированного рациона, обедненного белками и

содержащего избыточное количество соли и других небезразличных для организма млекопитающих компонентов, приводит к нарушению комплекса функциональных механизмов, обеспечивающих углеводно-жировой, водно-электролитный и белковый обмен в печени. В результате морфофункциональный статус одного из самых наиболее важных органов метаболизма характеризуется неспецифическими изменениями, несущими черты донозологического состояния.

Установлено, что у крыс экспериментальной группы имеет место достоверное уменьшение объёма паренхимы, увеличение объёма стромальной части печени и стромально-паренхиматозного индекса равно (р <0,05). Полученные данные свидетельствуют об активации процесса пролиферации в строме печени, что возможно развитием её фиброза в дальнейшем. В таблица 2. показаны стромально-паренхиматозного индекса печени крыс при влиянии высокожировой и высокоуглеводной диеты.

Таблица 2. **Стромально-паренхиматозного индекса печени крыс при влиянии высокожировой и высокоуглеводной диеты**

Структурные элементы Группа крыс контрольная экспериментальная Строма % 22,6 - 31,2 24,5 - 33,6 $29,3 \pm 1,1*$ $27,1 \pm 1,1$ Паренхима % 68,8 - 77,4 66,4 - 75,5 $70,7 \pm 1,1*$ $72,9 \pm 1,1$ 0.32 - 0.40,36 - 0,45Стромально-паренхиматозный 0.39 ± 0.01 $0.41 \pm 0.0*$ индекс

Примечание. * p <0,05 по сравнению с контрольной группой.

Таким образом, питание с избытком жиров и углеводов в рационе крыс

 $(M\pm m)$

приводит к морфофункциональным нарушениям печени, проявляющимся дискомплексацией балочнорадиарного строения и повышением стромально-паренхиматозного индекса. Исследованием подтверждается, что наличии функциональных нарушений в органе может стать причиной развития стеатогепатита. При моделировании МС воспроизводит большинство типичных признаков данного синдрома у грызунов и может быть полезна в изучении морфологических основ развития МС.

Литература

- 1. Чабанова Н.Б. Материнское ожирение как фактор риска гестационных осложнений / Н.Б. Чабанова, Т.Н. Василькова, Г.А. Василькова //Евразийский союз ученых. 2016. № 30-1. С. 84–85.
- 2. Васендин Д.В. Морфологические особенности печени крыс Вистар при экспериментальном ожирении /Д.В. Васендин, С.В. Мичурина, И.Ю. Ищенко // Вестник Ивановской медицинской академии. 2014. Т. 19, № 4. С. 19–22.
- 3. Кравчук Е.Н., Галагудза М.М. Экспериментальные модели метаболического синдрома. Артериальная гипертензия. 2014; 20 (5): 377–383. DOI: 10.18705/1607-419X-2014-20-5-377-383.
- 4. Kwitek A.E. Rat models of metabolic syndrome. Methods Mol. Biol. 2019; 2018: 269–285. DOI: 10.1007/978-1-4939-9581-3 13.
- 5. Ilyasov A.S., Djumanova N.E., Razzokov T.B., Khasanova F.O. /Morphology of the aorta in rats with metabolic syndrome //European journal of modern medicine and practice vol. 4 no. 12 (dec 2024) ejmmp ISSN: 2795-921X ISSN: 2795-921X 551-556
- 6. Илясов А.С., Джуманова Н.Э., Раззоков Б.Т., Хасанова Ф.О. /Реактивные изменение аорты крыс при диет-индуцированном метаболическом синдроме. World of Medicine: Journal of Biomedical Sciences Vol. 1 No.12 (2024) 205-210 https://wom.semanticjournals.org/index.php/biomed
- 7. Расулова М. Р., Парманов А. А. СУДЕБНО-МЕДИЦИНСКАЯ ОЦЕНКА

ДАННЫХ УЛЬТРАЗВУКОВОГО ИССЛЕДОВАНИЯ ПЕЧЕНИ В СВЯЗИ С ТУПОЙ ТРАВМОЙ ЖИВОТА //Экономика и социум. — 2024. — N0. 4-1 (119). — С. 1058-1061. 8. Джумаев А. У., Расулова М. Р. ОКИСЛИТЕЛЬНО—ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИЛА И КРОВОТОКА В МИОКАРДЕ БЕЛЫХ КРЫС //Экономика и социум. — 2024. — N0. 12-2 (127). — С. 1160-1165.